Session Hijacking

Module 11

Engineered by Hackers. Presented by Professionals.
Fireshell Fix as Easy as HTTPS

November 2010 will be remembered as the month that Fireshell exploded onto the computing scene, much to the delight of college students everywhere. The Firefox browser add-on makes it trivial to gain access to anyone's Facebook account while they're connected to the Internet using an open, unsecured Wi-Fi connection.

Of course, the session hijacking attack vulnerability that Fireshell exploits has been well-known in hacking and security circles for ages – all that Fireshell does is make the attack spectacularly easy. And it's a bit unfair to highlight Facebook as being susceptible to the attack, if only because many other popular sites, including Flickr, Foursquare and Wordpress are just as susceptible to it, too.

http://www.esecurityplanet.com
Module Objectives

- What is Session Hijacking?
- Key Session Hijacking Techniques
- Brute Forcing
- Spoofing vs. Hijacking
- Session Hijacking Process
- Types of Session Hijacking
- Session Hijacking in OSI Model

- Application Level Session Hijacking
- Network Level Session Hijacking
- TCP/IP Hijacking
- Session Hijacking Tools
- Countermeasures
- IPSec Architecture
- Penetration Testing
What is **Session Hijacking**?

Session Hijacking refers to the exploitation of a **valid computer session** where an attacker takes over a session between two computers.

The attacker steals a valid session ID which is used to get into the system and snoop the data.

In TCP session hijacking, an attacker takes over a **TCP session** between two machines.

Since most authentication only occurs at the start of a TCP session, this allows the attacker to gain access to a machine.
Dangers Posed by *Hijacking*

- Most countermeasures do not work unless you use encryption.
- Hijacking is simple to launch.
- Threat of identity theft, information loss, fraud, etc.
- You can do little to protect against it unless you switch to another secure protocol.
- Most computers using TCP/IP are vulnerable.
Why Session Hijacking is Successful?

- No Account Lockout For Invalid Session IDs
- Weak Session ID Generation Algorithm
- Insecure Handling
- Indefinite Session Expiration Time
- Small Session IDs
- Clear Text Transmission
Key Session Hijacking Techniques

- **Brute Forcing**: The attacker attempts different IDs until he succeeds.
- **Stealing**: Attacker uses different techniques to steal Session IDs.
- **Calculating**: Using non-randomly generated IDs, an attacker tries to calculate the Session IDs.
Brute Forcing

Using **brute force attacks**, an attacker tries to guess **session ID** until he guesses the session ID.

For example, in the URL’s, an attacker is trying to guess the session ID:

- http://www.mysite.com/view/VW30422101518909
- http://www.mysite.com/view/VW30422101520803
- http://www.mysite.com/view/VW30422101522507

Session ID’s can be stolen using different techniques such as:

1. Using the HTTP referer header
2. Sniffing the network traffic
3. Using the Cross-Site Scripting attacks
4. Sending Trojans on client PCs

1. Using a "**referrer attack**", an attacker tries to lure a user to click on a link to another site (a mysite link, say www.mysite.com)

2. For example, GET /index.html HTTP/1.0 Host: www.mysite.com Referer: www.mywebmail.com/viewmsg.asp?msgid=689645&S1D=2556X54VA75

3. The attacker obtains the session ID of the user by sending when the browser sends the referer URL that contains the session ID of the user to the attacker’s site (www.mysite.com)
Brute Forcing Attack

Using brute force attacks, an attacker tries to guess session ID until he finds the correct session ID.

Possible range of values for the session ID must be limited to perform a successful brute force attack.

Note: Session ID brute forcing attack is known as session prediction attack if the predicted range of values for a session ID is very small.
HTTP Referrer Attack

In a referrer attack, attacker tries to lure a user to click on a link to another site (a mysite link, say www.mysite.com)

For example, GET /index.html HTTP/1.0 Host: www.mysite.com Referer: www.mywebmail.com/viewmsg.asp?msgid=689645&SID=2556X54VA75

The browser sends the referrer URL containing the session ID to the attacker's site - www.hostile.com, and the attacker now has the session ID of the user.
Spoofing vs. Hijacking

Spoofing Attack

Attacker *pretends to be another user* or machine (victim) to gain access.

Attacker does not take over an existing active session. Instead, he initiates a new session using victim’s stolen credentials.

Hijacking

Session hijacking is the process of taking over an *existing active session*.

Attacker relies on the legitimate user to make a connection and authenticate.

John (Victim)

John’s stolen credentials

I am John, here are my credentials

Server

Attacker

John logs on to the server with his credentials

Predicts the sequence and kills John’s connection

Spoofs John’s IP and hijacks the session

Server

Attacker
Session Hijacking Process

1. **Sniff**
 - Place yourself between the victim and the target (you must be able to sniff the network)

2. **Monitor**
 - Monitor the flow of packets and predict the sequence number

3. **Session Desynchronization**
 - Break the connection to the victim’s machine

4. **Session ID prediction**
 - Take over the session

5. **Command Injection**
 - Start injecting packets to the target server
Packet Analysis of a Local Session Hijack

SYN <Clt ISN 4000><WIN 512>

SYN <Svr ISN 5000><WIN 1024> /ACK 4001

ACK 4001

DATA=128 <Clt SEQ 4001>

ACK (Clt SEQ + DATA) 4129

DATA=91 <Clt SEQ 4129>

ACK (Clt SEQ + DATA) 4220
Types of Session Hijacking

Active
In an active attack, an attacker finds an active session and takes over.

Passive
With passive attack, an attacker hijacks a session, but sits back, and watches and records all the traffic that is being sent forth.
Session Hijacking in OSI Model

Network Level Hijacking

Network level can be defined as the interception of the packets during the transmission between the client and the server in a TCP and UDP session.

Application Level Hijacking

Application level is about gaining control on the HTTP's user session by obtaining the session ID's.
Application Level Session Hijacking

In a Session Hijacking attack, a session token is stolen or a valid session token is predicted to gain unauthorized access to the web server.

A session token can be compromised in various ways:
- Session Sniffing
- Predictable session token
- Man-in-the-middle attack
- Man-in-the-browser attack
- Client-side attacks
Session Sniffing

- Attacker uses a sniffer to **capture a valid session token called “Session ID”**
- Attacker then uses the valid token session to **gain unauthorized access to the web server**
Predictable Session Token

It is a method used for predicting a session ID or to impersonate a web site user

Predicting a session ID is also known as **Session Hijacking**

Using session hijacking technique, an attacker gets the ability to **ping web site requests** with compromised user's privileges

By guessing the unique **session value or deducing** the session ID accomplishes the attack
How to Predict a Session Token?

Most of the webservers use custom algorithms or a predefined pattern to generate sessions IDs.

Captures

Attacker captures several session IDs and analyzes the pattern.

Predicts

Man-in-the-Middle Attack

The man-in-the-middle attack is used to intrude into an existing connection between systems and to intercept messages being exchanged.

Attacker uses different techniques and split the TCP connection into two connections:
1. Client-to-attacker connection
2. Attacker-to-server connection

After the successful interception of TCP connection, an attacker can read, modify, and insert fraudulent data into the intercepted communication.

In the case of an http transaction, the TCP connection between the client and the server becomes the target.
Man-in-the-Browser Attack

- Man-in-the-browser attack uses a Trojan Horse to intercept the calls between the browser and its security mechanisms or libraries.
- It works with an already installed Trojan horse and acts between the browser and its security mechanisms.
- Its main objective is to cause financial deceptions by manipulating transactions of Internet Banking systems.
Steps to Perform Man-in-the-Browser Attack

1. The Trojan first infects the computer's software (OS or application)
2. The Trojan installs malicious code (extension files) and saves it into the browser configuration
3. After the user restarts the browser, the malicious code in the form of extension files is loaded
4. The extension files register a handler for every visit to the webpage
5. When the page is loaded, the extension uses the URL and matches it with a list of known sites targeted for attack
6. The user logs in securely to the website
7. It registers a button event handler when a specific page load is detected for a specific pattern and compares it with its targeted list
8. The browser sends the form and modified values to the server
Steps to Perform Man-in-the-Browser Attack

9. When the user clicks on the button, the extension uses DOM interface and extracts all the data from all form fields and modifies the values.

10. The server receives the modified values but cannot distinguish between the original and the modified values.

11. After the server performs the transaction, a receipt is generated.

12. Now, the browser receives the receipt for the modified transaction.

13. The browser displays the receipt with the original details.

14. The user thinks that the original transaction was received by the server without any intercCTIONS.
Client-side Attacks

- **XSS**
 - Cross-Site Scripting attacks are a type of injection attacks, in which the malicious scripts are injected into the web sites.

- **Malicious JavaScript Codes**
 - A malicious script can be embedded in a web page and does not generate any type of warnings when the page is viewed in any browser.

- **Trojans**
 - Trojan horse is a program in which the malicious code is contained inside apparently harmless programming or data in such a way that it can get control and cause damage.

Client-Server Model

- **Client**
- **Server**
- **Malicious Server**
- **Request**
- **Response**
- **Attack**
Cross-site Script Attack

The attacker can compromise the session token by sending malicious code or programs to the client-side programs.

The example here shows how the attacker steals the session token using XSS attack.

If an attacker sends a crafted link to the victim with the malicious JavaScript, when the victim clicks on the link, the JavaScript will run and complete the instructions made by the attacker.

The example here uses an XSS attack to show the cookie value of the current session.

Using the same technique, it is possible to create a specific JavaScript code that will send the cookie to the attacker:

```
<SCRIPT>alert(document.cookie);</SCRIPT>
```
Session Fixation

Session Fixation is an attack that allows an attacker to hijack a valid user session.

The attack tries to lure a user to authenticate himself with a known session ID and then hijacks the user-validated session by the knowledge of the used session ID.

The attacker has to provide a legitimate web application session ID and try to lure victim browser to use it.

Several techniques to execute Session Fixation attack are:

- Session token in the URL argument
- Session token in a hidden form field
- Session ID in a cookie
Session Fixation Attack

- Attacker exploits the **vulnerability of a server** which allows a user to use fixed SID
- Attacker provides a **valid SID** to a victim and lures him to **authenticate himself** using that SID

1. Attacker sends an email to the victim with a link to the vulnerable server.
2. Victim clicks on the link and logs in on the vulnerable server.
3. Attacker logs in with the same SID (sessionid=0D6441FEA4496C2).
4. Victim is redirected to the vulnerable server with the same SID (sessionid=0D6441FEA4496C2).
Module Flow

- Session Hijacking Concepts
- Application Level Session Hijacking
- Network Level Session Hijacking
- Penetration Testing
- Countermeasures
- Session Hijacking Tools
Network Level Session Hijacking

- The network level hijacking is implemented on the data flow of the protocol shared by all web applications.
- By attacking the network level sessions, the attacker gathers some critical information which is used to attack the application level sessions.

Network level hijacking includes:
- Blind Hijacking
- TCP/IP Hijacking
- UDP Hijacking
- RST Hijacking
- Man in the Middle: Packet Sniffer
- IP Spoofing: Source Routed Packets
The 3-Way Handshake

If the attacker can anticipate the **next sequence** and **ACK number** that Bob will send, he/she will **spoof** Bob’s address and start a communication with the server.

1. Bob initiates a connection with the server and sends a packet to the server with the **SYN bit set**.
2. The server receives this packet and sends back a packet with the **SYN/ACK bit** and an **ISN (Initial Sequence Number)** for the server.
3. Bob sets the **ACK bit** acknowledging the receipt of the packet and increments the sequence number by 1.
4. Now, the two machines successfully **established a session**.
Sequence Numbers

Sequence numbers are important in providing a reliable communication and are also crucial for hijacking a session.

They are a 32-bit counter. Therefore, the possible combinations can be over 4 billion.

They are used to tell the receiving machine in what order the packets should go when they are received.

Therefore, an attacker must successfully guess the sequence numbers in order to hijack a session.
Sequence Number Prediction

After a client sends a connection request (SYN) packet to the server, the server responds (SYN-ACK) with a sequence number of choosing, which must be acknowledged by the client.

This sequence number is predictable; the attack connects to a server first with its own IP address, records the sequence number chosen, and then opens a second connection from a forged IP address.

If the source IP address is used for authentication, then the attacker can use one-sided communication to break into the server.

The attack does not see the SYN-ACK (or any other packet) from the server, but can guess the correct response.
TCP/IP Hijacking

- TCP/IP hijacking is a hacking technique that uses **spoofed packets** to take over a connection between a victim and a target machine.
- The victim's connection hangs and the attacker is then able to **communicate with the host's machine** as if the attacker is the victim.
- To launch a TCP/IP hijacking attack, the **attacker must be on the same network as the victim**.
- The target and the victim machines can be anywhere.
TCP/IP Hijacking

1. Attacker sniffs the victim's connection and uses victim's IP to send a spoofed packet with the predicted sequence number.

2. Host processes the **spoofed packet**, increments the sequence number and sends acknowledgement to the victim's IP.

3. Victim machine is unaware of the spoofed packet, so it ignores the host machine's **ACK packet** and turns sequence number count off.

4. Therefore, the host receives packets with the incorrect sequence number.

5. The attacker forces the victim's connection with the host machine to a **desynchronized state**.

6. The attacker **tracks sequence numbers** and continuously spoofs packets that come from the victim's IP.

7. The attacker continues to communicate with the **host machine** while the victim's connection hangs.
IP Spoofing: Source Routed Packets

Source Routed Packets technique is used for **gaining unauthorized access** to the computer with the aid of the trusted host’s IP address.

The host’s IP address spoofs the packets so that the server **managing a session** with the client, accepts the packets.

When the session is established, the hijacker **injects the forged packets** before the client responds.

The original packet is lost as the server gets the packet with a **different sequence number**.

The packets are source-routed where the patch to the **destination IP** can be specified by the attacker.
RST Hijacking

1. RST hijacking involves injecting an authentic-looking reset (RST) packet using spoofed source address and predicting the acknowledgment number.

2. The victim believes that the source actually sent the reset packet and resets the connection.

3. RST Hijacking can be carried out using a packet crafting tool such as Colasoft’s Packet Builder and TCP/IP analysis tool such as tcpdump.

4. Turn on the ACK flag in tcpdump to sniff the packets.
Blind Hijacking

- The attacker can inject the **malicious data or commands** into the intercepted communications in the TCP session even if the source-routing is disabled.
- The attacker can send the data or comments but has no **access to see the response**.
Man-in-the-Middle Attack using Packet Sniffer

In this attack, the packet sniffer is used as an interface between the client and the server.

The packets between the client and the server are routed through the hijacker’s host by using two techniques.

Using forged Internet Control Message Protocol (ICMP) – It is an extension of IP to send error messages where the attacker can send messages to fool the client and the server.

Using Address Resolution Protocol (ARP) spoofing – ARP is used to map the local IP addresses to hardware addresses or MAC addresses.

ARP spoofing involves fooling the host by broadcasting the ARP request and changing its ARP tables by sending the forged ARP replies.
UDP Hijacking

1. Attacker sends a **forged server reply** to the client’s UDP request before the server responds to it.
2. Attacker uses **Man-in-the-Middle** attack to intercept server’s response to the client and sends its own forged reply.
Session Hijacking Tool: Paros

- Paros is a man-in-the-middle proxy and application vulnerability scanner.
- It allows attacker to intercept, modify, and debug HTTP and HTTPS data on-the-fly between a web server and a client browser.
- It also supports spidering, proxy-chaining, filtering, and application vulnerability scanning.

http://www.parosproxy.org
Session Hijacking Tool: Burp Suite

- Burp suite allows attacker to inspect and modify traffic between browser and the target application.
- It analyzes all kinds of content, with automatic colorizing of request and response syntax.
Session Hijacking Tool: Firesheep

Firesheep is an extension for the Firefox web browser which allows attacker to steal a valid session ID to get into the system and snoop the data.

http://codebutler.github.com
Session Hijacking Tools

- Hamster
 http://hamster.erratasec.com

- Session Thief
 http://scriptjunkie1.110mb.com

- Surf Jack
 http://surfjack.googlecode.com

- Ettercap
 http://ettercap.sourceforge.net

- Hunt
 http://packetstormsecurity.org

- JHijack
 http://jhijack.sourceforge.net

- TamperIE
 http://www.bayden.com

- Ferret
 http://www.erratasec.com
Countermeasures

- Use secure shell (SSL) to create a secure communication channel
- Pass the authentication cookies over HTTPS connection
- Implement the logout functionality for user to end the session
- Generate the session ID after successful login
- Use string or long random number as a session key
- Pass the encrypted data between the users and the webservers
Protecting against **Session Hijacking**

- Use encryption
- Minimize remote access
- Use a secure protocol
- Educate the employees
- Limit incoming connections
- Regenerate the session ID after login
Methods to Prevent Session Hijacking:
To be Followed by Web Developers

- Reduce the life span of a session or a cookie
- Create session keys with lengthy strings or random number so that it is difficult for an attacker to guess a valid session key
- Expire the session as soon as the user logs out
- Encrypt the data and session key that is transferred between the user and the web servers
- Regenerate the session id after a successful login to prevent session fixation attack
- Prevent Eavesdropping within the network
Methods to Prevent Session Hijacking:
To be Followed by Web Users

- Do not click on the links that are received through mails or IM's
- Use Firewalls to prevent the malicious content from entering the network
- Use firewall and browser settings to restrict cookies
- Make sure that the website is certified by the certifying authorities
- Make sure you clear history, offline content, and cookies from your browser after every confidential and sensitive transaction
- Prefer https, a secure transmission, rather than http when transmitting sensitive and confidential data
- Logout from the browser by clicking on logout button instead of closing the browser
Defending against Session Hijack Attacks

- Use encrypted protocols that are available at OpenSSH suite
- Use strong authentication (like Kerberos) or peer-to-peer VPN's
- Use IDS products or ARPwatch for monitoring ARP cache poisoning
- Configure the appropriate internal and external spoof rules on gateways
Session Hijacking Remediation

1. Defense in depth is a key component of a comprehensive security plan

2. Defense in depth is also a key component in protecting a network from session hijack attacks

3. Defense in depth is defined as the practice of using multiple security systems or technologies to prevent network intrusions

4. The central idea behind the concept is that if one counter measure fails, there are additional levels of protection to safeguard the network
IPSec is a set of protocols developed by the IETF to support the secure exchange of packets at the IP layer. It is deployed widely to implement Virtual Private Networks (VPNs).
Modes of IPSec

Transport Mode
- Authenticates two connected computers
- Has an option to encrypt data transfer
- Compatible with NAT

Tunnel Mode
- Encapsulates packets being transferred
- Has an option to encrypt data transfer
- Not compatible with NAT
IPSec Architecture

- AH Protocol
 - Authentication Algorithm
- ESP Protocol
 - Encryption Algorithm
- DOI
 - Key Management
IPSec Authentication and Confidentiality

IPSec uses two different security services for authentication and confidentiality:
- Authentication Header (AH)
- Encapsulation Security Payload (ESP)

1. Authentication Header (AH) provides data authentication of the sender
2. Encapsulation Security Payload (ESP) provides both data authentication and encryption (confidentiality) of the sender
Components of IPSec

IPSec Policy Agent
A service of the Windows 2000, collects IPSec policy settings from the active directory and sets the configuration to the system at start up.

IPSec driver
A software, that performs protocol-level functions that are required to encrypt and decrypt the packets.

Internet Key Exchange (IKE)
IPSec protocol that produces security keys for IPSec and other protocols.

Oakley
A protocol, which uses Diffie-Hellman algorithm to create master key, and a key that is specific to each session in IPSec data transfer.

Internet Security Association Key Management Protocol
Software that allows two computers to communicate by encrypting the data that is exchanged between them.
IPSec Implementation
Session Hijacking

Pen Testing

1. **Locate a session**
 - Session ID is used in URL?
 - **Sniff session traffic between two machines**
 - **Session is encrypted?**
 - **Abort or Use Trojans to perform session hijacking**
 - **Session ID is recovered?**
 - **Use automated tools to hijack sessions**
 - Sniff session traffic between two machines using tools such as Wireshark, CACE Pilot, Capsa Network Analyzer, Windump, etc.
 - Use proxy server trojans which changes the proxy settings in the victim’s browser
 - Use automated tools such as Paros proxy, Burp suite, Webscarab, etc. to hijack sessions
 - Crack the session ID if it is URL encoded, HTML encoded, Unicode encoded, Base64 encoded or Hex Encoded

2. **Crack session ID encryption**
 - **Use phishing mails for session fixation**
Session Hijacking Pen Testing

1. Make normal connection with one of the machines
2. Collect several session IDs
3. Predict a new session ID
4. Replay new session ID
5. Connection established?
 - Yes
 - No
6. Brute force Session IDs
7. Document all the findings

- Brute force session ID’s with possible range of values for the session ID limited, until the correct session ID is found.
Module Summary

- In session hijacking, an attacker relies on the legitimate user to connect and authenticate, and will then take over the session.
- In a spoofing attack, the attacker pretends to be another user or machine to gain access.
- Successful session hijacking is difficult and is only possible when a number of factors are under the attacker's control.
- Session hijacking can be active or passive in nature depending on the degree of involvement of the attacker.
- A variety of tools exist to aid the attacker in perpetrating a session hijack.
- Session hijacking could be dangerous, and therefore, there is a need for implementing strict countermeasures.
"Being able to break security doesn’t make you a hacker any more than being able to hotwire cars makes you an automotive engineer."

- Eric Raymond,
 An author and open source software advocate